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Determination of the strain ellipsoid from sectional data 

DECLAN G.  DE PAOR 

Department of Earth & Planetary Sciences, Johns Hopkins University. Baltimore, MD 21218, U.S.A. 

(Received 21 March 1989; accepted in revised form 7 June 1989) 

Abstract--This paper presents a new way to determine the shape and orientation of the triaxial strain ellipsoid, 
given sectional strain data from at least three arbitrary planes. First the sectional strain ellipses are scaled to 
maximize compatibility along their lines of intersection. Then, using formulae for strain determination from 
three known stretches, the sectional strain ellipse is calculated for a 'fourth' plane chosen to intersect the data 
planes at the highest possible angles. By repeated sectional strain determination in a set of test planes oriented 
perpendicular to the above fourth plane, the triaxial strain state is revealed. The longest test sectional strain 
ellipse long axis is the strain ellipsoid's long axis and the shortest test sectional strain ellipse short axis is the strain 
ellipsoid's short axis. The strain ellipsoid's intermediate axis is the pole to the plane of maximal and minimal 
stretches and its stretch is calculated in the test plane in which it lies. 

Manual calculations, while easily understood, are time-consuming, requiring several hours for one triaxial 
strain determination, but a set of computer programs is available from the author. Accuracy is evaluated by 
determining the strain state in the data planes given the calculated triaxial ellipsoid's principal sections, and 
comparing results of such determinations with the observed data. 

INTRODUCTION 

Mosx strain analysis techniques yield only two- 
dimensional data, so to derive three-dimensional strain 
it is necessary to combine ellipses from three or more 
measurement planes. Despite considerable literature on 
the subject (Ramsay 1967, Helm & Siddans 1971, Ram- 
berg 1976, Shimamoto & Ikeda 1976, Oertel 1978, 
Milton 1980, Gendzwill & Stauffer 1981, Owens 1984, 
De Paor 1986, 1988, Treagus 1986), combining two- 
dimensional data to give a three-dimensional solution 
remains a major impediment in the way of more wide- 
spread practical applications of strain theory. Most pro- 
cedures described in the literature involve a level of 
computation that precludes frequent use by field geolo- 
gists. 

Furthermore, whereas any section of an ellipsoid is an 
ellipse, the reverse is not true: a set of arbitrary ellipses 
do not necessarily lie on the surface of any real 
ellipsoid--they could lie on a cylinder, paraboloid or 
hyperboloid, for example, or they might not be confined 
within a simply connected surface in the topological 
sense. Since errors are inevitable in determination of 
sectional strain data, it has always been necessary to 
render natural data compatible by adjusting sectional 
ellipses to achieve a perfect fit, either by modifying 
calculated axes directly or by adjusting components of 
the reciprocal quadratic tensor whose eigenvectors 
determine those axes. Field geologists are rightly scepti- 
cal of such mathematical 'fudge factors'. Even after 
modification of the data, complex numbers arise in 
calculations when the ellipses are really sections of a 
quadric other than an ellipsoid. 

The purpose of this paper is to present a simple 
solution to the problem using a readily-understood 
method. The same steps are followed in manual and 

computerized computations. Thus, the computer speeds 
the process without obscuring the logic employed. Even 
if restricted to the use of a hand calculator, the task can 
easily be completed in an afternoon. 

OUTLINE OF THE METHOD 

Given the minimum of three data planes, the method 
involves the following steps: (i) determination of orien- 
tations, shapes and relative sizes of three aribtrary 
sections of the strain ellipsoid; (ii) careful choice of a 
fourth plane intersecting the three data planes in a 
tetrahedron with large dihedral angles; (iii) calculation 
of the strain state in the fourth plane using formulae (De 
Paor 1988) for strain determination from three known 
stretches; (iv) determination of the strain state in a large 
set of test planes perpendicular to the fourth plane; (v) 
inspection of these test strain ellipses to reveal absolute 
maximum and minimum radii which are identified as the 
strain ellipsoid's longest and shortest semiaxes; the 
intermediate ellipsoid axis is located perpendicular to 
the plane of the maximum and minimum and its length is 
determined using the test plane in which it lies. 

That concludes the theory of the method; however, a 
number of practical problems arise in the implemen- 
tation of this simple plan. 

Determination of sectional strain ratios and orientations 

Sectional strain data may be collected from joint 
surfaces in the field or from oriented sections. It may not 
be convenient, and it is not necessary, to obtain mutually 
perpendicular sections, but to avoid inaccuracies, dihed- 
ral angles should be large--ideally in the range 90 ° + 
20 ° . Reliable results cannot be expected if section planes 
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are almost parallel! The laboratory procedure begins by 
placing an oriented specimen in a bowl of sand and 
restoring its field orientation. The section dips are 
recorded in the range [00,90 ° ] while strikes in the range 
[00,360 ° ] are designated by viewing along the strike line 
in the direction that makes the dip a clockwise deflection 
from the horizontal. Strain is determined mesoscopi- 
caily or microscopically using any selected technique. 
Strain ratios and axial pitches are calculated--the latter 
as positive clockwise angles in the range [0°,180 ° ] rela- 
tive to the quoted end of the section's strike line. 

Determination of the sizes of sectional ellipses 

Whilst some methods of strain analysis give absolute 
values of the sectional ellipse axes $1 and $2 or, equiva- 
lently, their reciprocal quadratic stretches ).~ and 2_~, 
most only permit calculation of an axial ratio Rs. Princi- 
pal stretches are given by the formulae 

s,= RV --fi ms S2= E,  (1) 

where As is termed area stretch. Since As is not detected 
during most strain analysis, the stretches of arbitrary 
lines in data planes are determined only to within a 
common multiplication factor. Solution of the standard 
ellipse equation 

2' = ~-'1 cos 2 q~ + ).~ sin 2 ~ (2) 

is possible only if A s = 1 is assumed. As a consequence, 
the two stretch estimates available for each of the 
specimen edges (lines of intersection AB, BC and CA of 
the data planes) are certain to differ. One ellipse may lie 
within another like the rings of a universal stage. Ellipse 
B may be scaled up or down to intersect ellipse A by 
multiplying both of its axes by a common area stretch 
factor Ab determined by the ratio of the two incompat- 
ible stretches along the edge AB, and similarly ellipse C 
may be made to intersect ellipse B, but then ellipses A 
and C will generally not intersect; rather one will pass 
within the orbit of the other. This 'closure error' may 
result from inaccurate strain measurement or from a 
breakdown in the assumptions of material continuity 
and strain homogeneity. Left uncorrected, it causes 
previously published methods of triaxial strain determi- 
nation to yield multiple strain ellipsoid estimates or even 
to output complex numbers. In the method presented 
here, if As is unknown, the user minimizes closure errors 
by scaling. Of course, if the incompatibilities are very 
large, then the method will not give accurate results, and 
therefore careful attention must be paid to minimization 
and equitable distribution of closure errors. A math- 
ematical algorithm has been described by Milton (1980) 
and a graphical procedure by De Paor (1986). However 
it is more useful to employ the computer program "2D- 
3D Compatibility" described in the Appendix in order to 
increase speed and accuracy. 

The fourth plane 

Having determined three sectional ellipse sizes to 
within a common scaling factor by minimization and 
equitable distribution of closure errors, the strain ellipse 
in a fourth plane is determined for reasons which will 
appear clear in the next step. The fourth plane is chosen 
to make a tetrahedron with large dihedral angles. In Fig. 
1, the acute spherical triangle formed by the intersection 
of the three data planes is shown. The pole to the fourth 
plane should be centrally located in this spherical tri- 
angle (if the specimen edges were spokes of an umbrella, 
the pole to the fourth plane would be its handle). The 
location of the pole to the fourth plane need not be 
determined with mathematical precision: all that is 
required is that the fourth plane should not intersect the 
spherical triangle of cropped great circles in Fig. 1. 

The strain ellipse in the fourth plane is determined 
either graphically or mathematically using the three 
known stretches along its lines of intersection with the 
data planes. Because of the careful choice of a fourth 
plane, these stretches are never ambiguous even if the 
sectional ellipses are not quite compatible. Strain deter- 
mination from three known stretches is a classical prob- 
lem that has received much attention recently (De Paor 
1986, 1988, Ragan 1987, Lisle & Ragan 1988). Ramsay 
(1967) used it to convert non-orthogonal sectional data 
into an orthogonal set, using a relatively cumbersome 
Mohr-circle construction. Simpler Mohr constructions 
are employed by Lisle & Ragan (1988). The most direct 
graphical solution is that of De Paor (1986) which 
employs the orthographic orientation net. However, 
because of the number of repetitions required here, the 
mathematical solution of Ragan (1987) or De Paor 

Spherical trlenglee _..~. 

Fourth plane 

Fig. 1. Spherical triangle formed by three cropped great circles. The 
pole to the fourth plane is centrally located in the triangle so that the 
fourth plane's great circle does not pass close to any of the specimen 

edges. See text for explanation. 
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(1988) should be employed. The latter is summarized as 
follows. Let the three known reciprocal quadratic 
stretches in the fourth plane be 2~', 2t~, 2'~ in the directions 
of the intersection lines with the three data planes q~a, 
q~b, ~¢, measured as pitches in the fourth plane. Using 
the formulae derived by De Paor (1988), we have 

_ I a r c t a n  [ E . . b . : [ ( 2 ;  - 2~ )  cos 2~1] 
q~'= 2 [E.,b.c[(2~' -~s~n2-~c]J (3) 

¢2 = qh + 90° 

2" sec 2 (cPa - q~i) - 2~ sec 2 (q~b - @i)], 
3.~ = tan2(@a - @j) - tan2 (@b - q)j) J 

(4) 

where the summation is over a permutation of the 
subscripts (replacing a by b, b by c, and c by a in turn) 
and i = 1 when j  = 2 or vice versa. These two equations 
give the principal directions q~, ~2 and their reciprocal 
quadratic stretches, 2[, 2~, in terms of known para- 
meters of the intersection lines subscripted a, b and c. A 
computer  listing to solve the equations is given in De 
Paor (1988). 

It should be noted that equations (3) and (4) do not 
always give real solutions because every set of three radii 
does not lie on an ellipse; some lie on straight lines, 
parabola or hyperbola, for example (Fig. 2). Real data 
should generate ellipses but errors may occasionally 
create problems. While hyperbolae may be instantly 
identified as the outcome of flawed data, the real prob- 
lem arises when bad data results in unreasonably large 
axial ratios. Also, if the three stretches are equal, 
equation (3) is undefined because a circle has no distinct 
principal directions. In this case, the radius of the 
circular section in the fourth plane is simply set equal to 
the three coincident stretch values. 

Strain determination in test planes 

fourth plane (i.e. in planes containing the pole to the 
fourth plane) (Fig. 3), using the same strain-from-three- 
stretches algorithm that yielded the strain in the fourth 
plane (equations 3 and 4). Because the strain state is 
already known in four planes, not three, the solution is 
overdetermined,  but only three of the four known strain 
ellipses are independent,  so the four stretches in each 
test plane would lie on a single ellipse if the data sections 
were compatible. For each test section, three known 
stretches are selected for inclusion in equations (3) and 
(4). One is always the stretch in the fourth plane. The 
other two are taken from the test plane's intersections 
with two sides of the spherical triangle in Fig. 1. The test 
plane also intersects the third side of the spherical 
triangle externally (Fig. 3), but this data are not included 
in calculations. The reason for always choosing the 
stretch along the fourth plane and never the external 
intersection line is as follows. If the fourth plane had not 
been set up and an arbitrary set of test planes was 
chosen, then two problems would arise in attempting to 
determine test strain ellipses from the three stretches 
along the data plane intersections. First, the test plane 
and a data plane would intersect in a glancing angle 
whenever their two poles came close, with consequent 
loss of accuracy in estimation of the stretch along their 
intersection line. Second, the problem would become 
indeterminate whenever a test plane passed through a 
specimen edge, for then two incompatible stretches 
would be recorded for the same direction. Furthermore,  
accuracy would be poor in test planes close to the edge 
directions, both due to the small angle between two of 
the three known stretches and to incompatibility arising 
from proximity to the edge direction. Using the fourth 
plane, and given that the sides of the spherical triangle 
are never more than about 110 ° of arc nor less than about 
70 °, there are always large angles between the three 
known stretches and there are never glancing intersec- 

The next step in the analysis is to inspect the strain 
state in a large number of planes perpendicular to the 

a) 

b) / 
/ 

Fig. 2. Determination of strain from three known stretches. (a) Sol- 
ution for good data. ~.~, 2~ and 2~ are measured from the strike of the 
fourth plane (zero line), qh is calculated as a positive clockwise angle 
from the zero line looking down on the plane. (b) Note that bad data 

may yield hyperbolae instead of an ellipse (or any other shape). 

Fig. 3. Choice of a set of test planes intersecting in the pole to the 
fourth plane. Only a few planes are shown for clarity. Solid dots 
represent the three known stretches in each test plane. Squares are the 

external intersections referred to in the text. 
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tions with the chosen data planes. Whenever a test plane 
passes through a specimen edge direction, an average of 
the two incompatible stretches along the edge is 
employed; there are still three known stretches to work 
with, one average, one from a data plane and one from 
the fourth plane. A computer program called "Solve 3 
stretches" (Appendix) speeds up the tedious exercise of 
determining sectional strain ellipses in a large number of 
test planes. 

The sectional strain ellipses in the test planes thus 
generated do not lie on a perfect strain ellipsoid, rather 
they form three surface segments with jumps across the 
test planes containing the specimen edges (Fig. 4). Each 
of the three surface segments is a portion of a perfect 
ellipsoid and for small incompatibilities along the edge 
directions, the differences between the three ellipsoidal 
segments are not large. We therefore fit maximum and 
minimum axes to the near-ellipsoidal composite surface 
defined by the locus of test-section ellipses. 

Location of  the maximum arid minimum stretch direc- 
tions 

Examination of Fig. 4 will convince the reader that the 
long axes of the sectional strain ellipses in test planes 
increase monotonically to a maximum in the test section 
that passes through the triaxial strain ellipsoid's longest 
axis (or closest to it in the case of relatively widely spaced 
test planes). Similarly, the short axis of the strain ellip- 
soid may be discovered by repeated testing of planes 
with ever-decreasing sectional short axes. Therefore, 
the test procedure may proceed in large increments (say 
10 °) at first; then when sectional axes stop getting longer 
and start shortening, or vice versa, the user may back- 
track with a smaller interval between test sections (say 
2°). 

.~. ~ - - . - ~ ,  ,' , ~ - ,  ",. \ - . ' ~  -, ,,~, 
• • " - "  " / ' ¢ . ~  / / ' / . ' , ' "  : ~ - " ~  X ' . " . L ' "  / 

~ 6 ' , ' ' \ "  t ,, " ~ L /  / / J . . ~ - ~  ~ ,~ " , X - ' T  ~,1 

' , ,  , ' , " / - / - '  . ' "  )" l - : i / ,  
, ' ; ' . ' ; '  " .  " / / , ' , '  , ! -I  H:.I  ; /  

t ' . ' t ~ _  / ~ " ~  / / .' I ~ - ~ ' "  I : . . ' 1  / I : . l / ,  
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11 / / ' ~  '~ I ~ l \ ~  / ~ "  I _ - t -  • / '  • / 
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Fig. 4. A perspective view of a set of strain ellipses determined from 
test planes outlines the periphery of the three-dimensional strain 
ellipsoid. Shaded planes pass through the specimen edges and bound 

the three slightly mismatched divisions of the ellipsoid's surface. 

Once the maximum and minimum triaxial stretches 
have been determined, the pole to their common plane 
is plotted and the test section passing through this pole is 
retrieved. The intermediate principal axis of the triaxial 
ellipsoid is determined using equation (2). Finally, the 

3 
principal stretches SI, $2 and $3 are all divided by ~/{$1 * 
$2 * $3} in order to eliminate the artificial volumetric 
stretch introduced during the scaling procedure (step i). 
When the ellipsoid's axes have been determined and 
normalized in this way, they are plotted on a stereonet in 
order to check the angles between them. In theory, these 
angles must be 90 ° but in practice their value depends on 
the degree of compatibility of the data sections. It is 
important to note that the procedure described here 
identifies ellipsoid axes by their extreme stretch values 
while ignoring the requirement of orthogonality. It may 
be useful to plot loci of sectional principal directions in 
order to see whether choice of test planes to either side 
of the maximal and minimal cases might improve the 
orthogonality of axes without significantly affecting the 
axial ratio. Also useful for the evaluation of results are 
loci of equal stretch which instantly reveal the strain 
ellipsoid's symmetry class (k > 1 or k < 1). 

MORE THAN THREE DATA PLANES 

As pointed out by Owens (1984), confidence in a 
strain estimate can be increased by obtaining data from 
more than the minimum number of three section planes. 
Incorporation of extra data in the present technique is 
easily accommodated, in contrast to all previously pub- 
lished techniques except Owens's. The extra planes 
provide a fifth, or subsequent, known stretch direction 
in each test plane. Since equations (3) and (4) are then 
overdetermined, the sectional strain ellipse is most con- 
veniently determined graphically using the technique of 
De Paor (1986). Graphical plotting of the data for each 
plane has the advantage that it reveals inaccuracies due 
to incorrect data. As before, stretch estimates from 
glancing intersections between the test plane and extra 
data planes must be treated with scepticism. 

INVERSE PROCEDURE 

It is sometimes necessary to carry out the inverse to 
the above procedure, that is to determine the two- 
dimensional strain state in a plane given the three- 
dimensional strain ellipsoid (Ramberg 1976, Gendzwill 
& Stauffer 1981). For example, one may wish to deter- 
mine the map-plane strain ellipse when the axes of the 
strain ellipsoid are all oblique to the horizontal. Using 
the method presented here, this is not a separate prob- 
lem but rather a part of the same procedure. The 
simplest solution is to treat the known principal planes of 
the strain ellipsoid as three 'data' planes and to deter- 
mine the strain in any other 'test' plane using equations 
(3) and (4). If the test plane makes a glancing angle with 
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any  o f  t he  p r inc ipa l  p l a n e s  o r  if  it passes  t h r o u g h  o r  c lose  

to  a p r inc ipa l  d i r e c t i o n ,  t h e n  it is n e c e s s a r y  to  first 

d e t e r m i n e  the  s t ra in  s ta te  in a f o u r t h  p l ane  tha t  in t e r -  

sec ts  the  tes t  p l a n e  m o r e  su i tab ly .  

T h e  i nve r se  p r o c e d u r e  p r o v i d e s  a w a y  to  tes t  t he  

a c c u r a c y  o f  a s o l u t i o n ,  by d e t e r m i n i n g  f r o m  the  ca lcu-  

l a t e d  p r inc ipa l  s t r e t che s ,  t h e  axia l  r a t ios  and  l o n g  axis 

o r i e n t a t i o n s  fo r  the  d a t a  p l anes ,  fo r  c o m p a r i s o n  wi th  the  
o b s e r v e d  da ta .  
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C O N C L U S I O N S  

T h e  d e t e r m i n a t i o n  o f  t h r e e - d i m e n s i o n a l  s t ra in  s ta tes  

f r o m  t w o - d i m e n s i o n a l  d a t a  n e e d  n o t  p r e s e n t  an insur -  

m o u n t a b l e  ba r r i e r .  U s i n g  r e c e n t l y  p u b l i s h e d  e q u a t i o n s  

fo r  s t ra in  f r o m  t h r e e  k n o w n  s t r e t c h e s ,  t he  s t ra in  s t a t e  in 

an  a r b i t r a r y  tes t  p l a n e  m a y  be  d e t e r m i n e d  f r o m  the  t h r e e  

k n o w n  s t r e t c h e s  a long  its l ines  o f  i n t e r s e c t i o n  wi th  t h r e e  

d a t a  p l a n e s  on  wh ich  t w o  d i m e n s i o n a l  s t ra in  ana ly se s  

h a v e  b e e n  p e r f o r m e d .  By  e x a m i n i n g  a set  o f  coax ia l  tes t  

p l a n e s ,  t he  t r iax ia l  s t ra in  s t a t e  m a y  be  r e v e a l e d .  P r o -  

c e d u r e s  o u t l i n e d  a b o v e  e n s u r e  tha t  e r r o r s  d u e  to g lanc -  

ing  ang le s  o f  i n t e r s e c t i o n ,  n e a r - p a r a l l e l  d a t a  p l a n e s  o r  

c o n g r u e n c e  o f  t w o  s t r e t c h e s  a r e  a v o i d e d .  E x t r a  d a t a  

p l a n e s  m a y  be  i n c l u d e d  to i n c r e a s e  c o n f i d e n c e  in t he  

c a l c u l a t e d  t es t  s ec t i ona l  e l l ipses  a n d  the  p r o c e d u r e  m a y  

be  r e v e r s e d  in o r d e r  to  e v a l u a t e  its a ccu racy .  

T h e  p r o g r a m s  r e f e r r e d  to  in t he  t ex t  a r e  a v a i l a b l e  to  

r e a d e r s  w h o  s e n d  a b l a n k  M a c i n t o s h  d i s k e t t e  a n d  a 

s t a m p e d  s e l f - a d d r e s s e d  m a i l i n g  p a c k a g e  to t he  a u t h o r .  
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A P P E N D I X  

D E T A I L S  O F  C O M P U T E R  P R O G R A M S  

The programs available from the author run on any Macintosh 
microcomputer and employ the standard user interface, therefore they 
are easily used even by non-computer oriented persons, i.e. most 
geologists. 

Figure A1 illustrates the screen layout for "2D-3D Compatibility" 
which is divided into four panels, one for each section plane and one 
for the stereonet. The strike and dip of each plane is entered into 
editable fields along with the pitch of each sectional ellipse axis. The 
user may then choose to enter absolute values of the sectional ellipse 
axes S I and S 2, in which case the computer calculates the axial ratios R~ 
= S~1S2 and area stretch factors A~ = St * $2 and enters them in the 
sixth and seventh edit fields of each panel. Alternatively. the user may 
enter the strain ratios, and let the computer determine the absolute 
stretches from equations (1). Since the area stretch factors are given a 
default value of 1, this generally results in the display of three 
incompatible sectional ellipses. When the "Test compatibility" menu 
option is selected, the section plane orientations are illustrated on the 
stereonet along with points indicating the axial pitches. In each panel, 
an ellipse is drawn to represent the sectional strain state, and two lines 
through its center represent the stretches determined for the specimen 
edges (directions of plane intersections). On a Mac II. these lines, 
ellipses, great circles and the numbers in edit fields are color-coded to 
assist in identification of features of each section plane, but even in 
black and white, it is immediately clear if one ellipse as scaled is too 
large or too small to fit the other two. Then the area stretch factor S~ * 
S 2 is changed in the appropriate plane and the test of compatibility is 
re-selected. If an ellipse displays errors of opposite sign (i.e. if it is too 
large to fit one section but too small to fit the other), no amount of 
rescaling will eliminate the error, but one should divide the incompati- 
bility evenly between the two edge directions, assuming an equal level 
of confidence in the strain data from the three section planes. These 
errors can be closed by adjusting the sectional principal directions, but 
such modification of the data is potentially dangerous and should 
always be limited to a few degrees. Note that closure of errors of like 
sign on both edges by adjustment of calculated axial ratios is never 
warranted since area stretch factors can always achieve the same end 
result. 

Once a satisfactory fit of the three sectional ellipses has been 
achieved, the program is quit and the edit field data is automatically 
stored to a text file for subsequent use. Prior to quitting, the screen 
may be saved to a MacPaint file for printing. 

In order to help the user to visualize the procedure, a second 
program, "2D-3D Perspective" is presented in Fig. A2. This program 
displays the sectional strain ellipses in perspective view in their 
respective great circles, using orthographic rather than stereographic 
hemispheric projection. When the three section planes have been 
entered, the great circles are cropped at their lines of intersection to 
reveal incompatibilities in the strain ellipse radii along the specimen 
edges. The area stretch factors obtained from the first pro~am may be 
applied to the cropped perspective views of the ellipses. 

A third program, "Solve 3 stretches", is used to solve equations (3) 
and (4) repeatedly for the test planes. It requires as input, three 
stretches from the test plane's intersections with the fourth plane and 
two of the data planes as explained in the main text. Its output gives the 
sectional stretches and principal directions. 
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Fig. A1. Screen layout for program "2D-3D Compatibility": (a) after entering data and testing its compatibility: (b) after 
applying area stretch factors (S t * $2) to maximize compatibility. 
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Fig. A2. Output of program "2D-3D Perspective". (a) Data entered for one secuon plane. The strain ellipse is shown in 
perspective view in this plane. (b) Cropped view of the three section planes and their lines of intersection. The ratios used 

are highly incompatible, for effect. 


